Empirical Correction To Tropical Heating:

Can We Correct Mid-Latitude Model Biases?

David M. Straus

George Mason University / COLA

Youkyoung Jang Florida International University

J. Shukla

George Mason University / COLA

Goals of This Research

Apply a technique to reduce the tropical bias in monthy mean diabatic heating in CESM simulations

Verify that some aspect of the mid-latitude bias in stationary waves is reduced

Determine if seasonal forecasts from real Initial Conditions are so improved.

Simple Recipe to Correct Model Tropical Heating Bias

- Zeroth Order "Correction" Technique
 - Subtract model bias in monthly mean climatological tropical diabatic heating
 - Three-dimensional model bias in diabatic heating is estimated from:
 - (a) 49 Oct-March simulations with CESM 1.0.5
 - (b) Estimates of observed diabatic heating from Chan and Nigam (2009)*
 - The correction term (equal to minus the model bias) is added directly to the tendency of dry static energy in the coupled model
 - The model moist, radiation and other parameterizations are still fully operative, thus can react to the added heating
 - All the coupled model feedbacks are retained

Simple Recipe to Correct Model Tropical Heating Bias

- > First Order "Correction" needed:
 - Model heating reacts so as to magnify correction and thereby lead to over-correcting
 - Simple fix is to multiply the heating correction by 0.5

Vertical
Integral of the
Correction
Added to
Temperature
Tendencies of
CESM
(Oct-Mar avg)

 $dT/dt = ... + (Q_{OBS} - Q_{GCM})$ (Zeroth Order Correction)

 $dT/dt =+ 0.5 * (Q_{OBS} - Q_{GCM})$ (First Order Correction)

Oct-Mar Vertically Integrated Heating Biases

Simple Recipe to Correct Model Tropical Heating Bias

- Second Order "Correction" needed:
 - Model heating reacts so as to magnify correction and thereby lead to over-correcting.
 - Simple fix is to multiply the heating correction by 0.5
 - Clearly this is not adequate
- ➤ Higher Order "Correction" will be needed:

Iterate this technique to provide an additive correction term that will reduce the climatological model tropical diabatic heating error to near zero (on a monthly basis)

Bias in 500 hPa Geopotential Eddy Field (Oct-Mar)

a)DJFM vv300: OBS

Sub-Monthly Transients 300 hPa meridional velocity

$$\overline{v'v'} = \overline{v^2} - \left(\overline{v}\right)^2$$

b)DJFM vv300: CTL

c)DJFM vv300: 0.5HTG

Conclusions

- > Heating correction does reduce heating biases (particularly double ITCZ)
- > More work needed on refining the heating correction
- Stationary Waves in Mid-Latitude Atlantic Region clearly improved
- > Corresponding improvement is seen in sub-monthly transients
- > This improvement mostly due to correction of the Pacific Basin Heating

Future Work

Apply the bias reduction in seasonal re-forecasts: Will it lead to any improvement in forecast skill?